메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
경민영 (한밭대학교) 박정호 (한밭대학교) 김명구 (한밭대학교) 신상모 (한밭대학교) 이현빈 (한밭대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.42 No.10
발행연도
2015.10
수록면
1,239 - 1,246 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
셀 카운팅은 세포의 성장을 분석하는 방법으로써 생물학연구에서 가장 많이 사용된다. 최근까지도 다양한 자동 셀 카운팅 기법이 제안되고 있지만 암세포와 같이 분열 속도가 빠르고 군집하려는 성질을 갖는 세포들은 분리 및 검출이 쉽지 않아 세포 이미지 분석을 통하여 셀 카운팅의 신뢰도를 높이기가 어렵다. 본 논문에서는 암 연구의 연구재료로 매우 보편적으로 사용되는 HeLa 세포 이미지 분석을 이용한 자동 셀 카운팅 방법을 제시한다. 세포막 추출 기반의 세포 분할 알고리즘을 통하여 세포의 형태적 상황을 구분하고, 세포 간 경계가 희미한 세포군집 내의 세포 분할을 위하여 역추적 알고리즘을 사용함으로써 셀 카운팅 정확도를 높인다. 실험을 통하여 제안하는 세포 분할 알고리즘이 기존의 세포 분할 알고리즘에 비해 정확함을 입증하였고, 결과적으로 매우 높은 자동 셀 카운팅 정확도를 얻을 수 있음을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안하는 자동 셀 카운팅 알고리즘
4. 실험 및 결과
5. 결론
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001972380