메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soo-eon Kim (Chung-ang University) So-Young Park (Chung-ang University) Sangshin Kwak (Chung-ang University)
저널정보
전력전자학회 JOURNAL OF POWER ELECTRONICS JOURNAL OF POWER ELECTRONICS Vol.16 No.6
발행연도
2016.11
수록면
2,231 - 2,242 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A simplified model predictive control method is presented in this paper. This method is based on a future reference voltage vector for a three-phase four-leg voltage source inverter (VSI). Compared with the three-leg VSIs, the four-leg VSI increases the possible switching states from 8 to 16 owing to a fourth leg. Among the possible states, this should be considered in the model predictive control method for selecting an optimal state. The increased number of candidate switching states and the corresponding voltage vectors increase the calculation burden. The proposed technique can preselect 5 among the 16 possible voltage vectors produced by the three-phase four-leg voltage source inverters, based on the position of the future reference voltage vector. The discrete-time model of the future reference voltage vector is built to predict the future movement of the load currents, and its position is used to choose five preselected vectors at every sampling period. As a result, the proposed method can reduce calculation load by decreasing the candidate voltage vectors used in the cost function for the four-leg VSIs, while exhibiting the same performance as the conventional method. The effectiveness of the proposed method is demonstrated with simulation and experiment results.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. CONVENTIONAL MODEL PREDICTIVE CURRENT CONTROL METHOD FOR THREE-PHASE FOURLEG VSIS
Ⅲ. PROPOSED MODEL PREDICTIVE CONTROL METHOD
Ⅳ. SIMULATION AND EXPERIMENT RESULTS
Ⅴ. CONCLUSIONS
REFERENCES

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-001586170