메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ruisen Huang (Pusan National University) Eakdanai Kavichai (Pusan National University) Keum-Shik Hong (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,152 - 1,157 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to reduce the online data processing time while maintaining good classification accuracy. For this purpose, kernel techniques are important means to enable a support vector machine (SVM) classifier to distinguish the non-linearly separable data set. This study investigated the performance of Gaussian kernel-based SVM and polynomial kernel-based SVM for processing functional near-infrared spectroscopy (fNIRS) data. Eight subjects participated in the experiment and performed 5 trials of mental arithmetic tasks. The brain signals were acquired using an fNIRS system from the prefrontal cortex. Five distinctive features (the slope, mean, variance, maximum and minimum of signal) were extracted and 3,000 samples of signals were used to train the SVM classifier. 16×8 classifiers were tested with a Gaussian kernel using 16 values of box constraint (C) and 8 values of standard deviation (σ), while 16×9 classifiers were tested with a polynomial kernel using 16 values of C and 9 values of the kernel order (p). The performance of the classifiers with different kernels and various configurations showed that, the Gaussian kernel (74.63% on average) outperformed the polynomial kernel (73.71% on average), but the latter was found to be more stable. The computation time analysis of both kernels shows great variation and it can be concluded that the polynomial kernel-based SVM is more robust for online systems due to the absence of singularity problem in numeric approximation.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539675