메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jiyue Hu (Wuhan University) Hong-Jun Liang (Wuhan University) Yi-Yan Lu (Wuhan University)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.29 No.6
발행연도
2018.1
수록면
689 - 701 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Corrosion of steel reinforcement is a principal cause of deterioration of RC columns. Making these corrosion-damaged columns conform to new safety regulations and functions is a tremendous technological challenge. This study presented an experimental investigation on steel-concrete jacketed corrosion-damaged RC columns. The influences of steel jacket thickness and concrete strength on the enhancement performance of the strengthened specimens were investigated. The results showed that the use of steel-concrete jacketing is efficient since the stub strengthened columns behaved in a more ductile manner. Moreover, the ultimate strength of the corrosion-damaged RC columns is increased by an average of 5.3 times, and the ductility is also significantly improved by the strengthening method. The bearing capacity of the strengthening columns increases with the steel tube thickness increasing, and the strengthening concrete strength has a positive impact on both bearing capacity, whereas a negative influence on the ductility. Subsequently, a numerical model was developed to predict the behavior of the retrofitted columns. The model takes into account corrosion-damage of steel rebar and confining enhancement supplied by the steel tube. Comparative results with the experimental results indicated that the developed numerical model is an effective simulation. Based on extensive verified numerical studies, a design equation was proposed and found to predict well the ultimate eccentric strength of the strengthened columns.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0