메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제61권 제1호
발행연도
2019.1
수록면
107 - 120 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Reservoir water level data identify the current water storage of the reservoir, and they are utilized as primary data for management and research ofagricultural water. For the reservoir storage management, Korea Rural Community Corporation (KRC) installed water level stations at around 1,600agricultural reservoirs and has been collecting the water level data every 10 minutes. However, various kinds of outliers due to noise and erroneousproblems are frequently appearing because of environmental and physical causes. Therefore, it is necessary to detect outlier and improve the qualityof reservoir water level data to utilize the water level data in purpose. This study was conducted to detect and classify outlier and normal data usingtwo different models including the threshold model and the artificial neural network (ANN) model. The results were compared to evaluate theperformance of the models. The threshold model identifies the outlier by setting the upper/lower bound of water level data and variation data and bysetting bandwidth of water level data as a threshold of regarding erroneous water level. The ANN model was trained with prepared training datasetas normal data (T) and outlier (F), and the ANN model operated for identifying the outlier. The models are evaluated with reference data which werecollected reservoir water level data in daily by KRC. The outlier detection performance of the threshold model was better than the ANN model, butANN model showed better detection performance for not classifying normal data as outlier.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0