메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
오세안 (영남대학교부속병원) 이창민 (경남과학고등학교) 이민우 (경남과학고등학교) 이영석 (경남과학고등학교) 이규환 (경남과학고등학교) 김성훈 (영남대학교부속병원) 김성규 (영남대학교부속병원) 박재원 (영남대학교) Ji Woon Yea (영남대학교)
저널정보
한국의학물리학회 의학물리 의학물리 제28권 제3호
발행연도
2017.9
수록면
100 - 105 (6page)
DOI
https://doi.org/10.14316/pmp.2017.28.3.100

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of the present study was to develop and evaluate patient-customized helmets with a three-dimensional (3D) printer for radiation therapy of malignant scalp tumors. Computed tomography was performed in a case an Alderson RANDO phantom without bolus (Non_Bolus), in a case with a dental wax bolus on the scalp (Wax_Bolus), and in a case with a patient-customized helmet fabricated using a 3D printer (3D Printing_Bolus); treatment plans for each of the 3 cases were compared. When wax bolus was used to fabricate a bolus, a drier was used to apply heat to the bolus to make the helmet. 3-matic® (Materialise) was used for modeling and polyamide 12 (PA-12) was used as a material, 3D Printing bolus was fabricated using a HP JET Fusion 3D 4200. The average Hounsfield Unit (HU) for the Wax_Bolus was ?100, and that of the 3D Printing_Bolus was ?10. The average radiation doses to the normal brain with the Non_Bolus, Wax_Bolus, and 3D Printing_Bolus methods were 36.3%, 40.2%, and 36.9%, and the minimum radiation dose were 0.9%, 1.6%, 1.4%, respectively. The organs at risk dose were not significantly difference. However, the 95% radiation doses into the planning target volume (PTV) were 61.85%, 94.53%, and 97.82%, and the minimum doses were 0%, 77.1%, and 82.8%, respectively. The technique used to fabricate patient-customized helmets with a 3D printer for radiation therapy of malignant scalp tumors is highly useful, and is expected to accurately deliver doses by reducing the air gap between the patient and bolus.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0